26 SWIG and Javascript

This chapter describes SWIG's support of Javascript. It does not cover SWIG basics, but only information that is specific to this module.

26.1 Overview

Javascript is a prototype-based scripting language that is dynamic, weakly typed and has first-class functions. Its arguably the most popular language for web development. Javascript has gone beyond being a browser-based scripting language and with node.js, it is also used as a backend development language.

Native Javascript extensions can be used for applications that embed a web-browser view or that embed a Javascript engine (such as node.js). Extending a general purpose web-browser is not possible as this would be a severe security issue.

SWIG Javascript currently supports JavascriptCore, the Javascript engine used by Safari/Webkit, and v8, which is used by Chromium and node.js.

WebKit is a modern browser implementation available as open-source which can be embedded into an application. With node-webkit there is a platform which uses Google's Chromium as Web-Browser widget and node.js for javascript extensions.

26.2 Preliminaries

26.2.1 Running SWIG

Suppose that you defined a SWIG module such as the following:

%module example
#include "example.h"
int gcd(int x, int y);
extern double Foo;

To build a Javascript module, run SWIG using the -javascript option and a desired target engine -jsc, -v8, or -node. The generator for node is essentially delegating to the v8 generator and adds some necessary preprocessor definitions.

$ swig -javascript -jsc example.i

If building a C++ extension, add the -c++ option:

$ swig -c++ -javascript -jsc example.i

The V8 code that SWIG generates should work with most versions from 3.11.10 up to 3.29.14 and later.

The API headers for V8 >= 4.3.0 define constants which SWIG can use to determine the V8 version it is compiling for. For versions < 4.3.0, you need to specify the V8 version when running SWIG. This is specified as a hex constant, but the constant is read as pairs of decimal digits, so for V8 3.25.30 use constant 0x032530. This scheme can't represent components > 99, but this constant is only useful for V8 < 4.3.0, and no V8 versions from that era had a component > 99. For example:

$ swig -c++ -javascript -v8 -DV8_VERSION=0x032530 example.i

If you're targetting V8 >= 4.3.0, you would just run swig like so:

$ swig -c++ -javascript -v8 example.i

This creates a C/C++ source file example_wrap.c or example_wrap.cxx. The generated C source file contains the low-level wrappers that need to be compiled and linked with the rest of your C/C++ application to create an extension module.

The name of the wrapper file is derived from the name of the input file. For example, if the input file is example.i, the name of the wrapper file is example_wrap.c. To change this, you can use the -o option. The wrapped module will export one function which must be called to register the module with the Javascript interpreter. For example, if your module is named example the corresponding initializer for JavascriptCore would be

bool example_initialize(JSGlobalContextRef context, JSObjectRef *exports)

and for v8:

void example_initialize(v8::Handle<v8::Object> exports)

Note: be aware that v8 has a C++ API, and thus, the generated modules must be compiled as C++.

26.2.2 Running Tests and Examples

The configuration for tests and examples currently supports Linux and Mac only and not MinGW (Windows) yet.

The default interpreter is node.js as it is available on all platforms and convenient to use.

Running the examples with JavascriptCore requires libjavascriptcoregtk-1.0 to be installed, e.g., under Ubuntu with

$ sudo apt-get install libjavascriptcoregtk-1.0-dev

Running with V8 requires libv8:

$ sudo apt-get install libv8-dev

Examples can be run using

$ make check-javascript-examples ENGINE=jsc

ENGINE can be node, jsc, or v8.

The test-suite can be run using

$ make check-javascript-test-suite ENGINE=jsc

You can specify a specific V8 version for running the examples and tests

$ make check-javascript-examples V8_VERSION=0x032530 ENGINE=v8

26.2.3 Known Issues

At the moment, the Javascript generators pass all tests syntactically, i.e., the generated source code compiles. However, there are still remaining runtime issues.

The primary development environment has been Linux (Ubuntu 12.04). Windows and Mac OS X have been tested sporadically. Therefore, the generators might have more issues on those platforms. Please report back any problem you observe to help us improving this module quickly.

26.3 Integration

This chapter gives a short introduction how to use a native Javascript extension: as a node.js module, and as an extension for an embedded Webkit.

26.3.1 Creating node.js Extensions

To install node.js you can download an installer from their web-site for Mac OS X and Windows. For Linux you can either build the source yourself and run sudo checkinstall or keep to the (probably stone-age) packaged version. For Ubuntu there is a PPA available.

$ sudo add-apt-repository ppa:chris-lea/node.js
$ sudo apt-get update
$ sudo apt-get install nodejs

As v8 is written in C++ and comes as a C++ library it is crucial to compile your module using the same compiler flags as used for building v8. To make things easier, node.js provides a build tool called node-gyp.

You have to install it using npm:

$ sudo npm install -g node-gyp

node-gyp expects a configuration file named binding.gyp which is basically in JSON format and conforms to the same format that is used with Google's build-tool gyp.


  "targets": [
      "target_name": "example",
      "sources": [ "example.cxx", "example_wrap.cxx" ]

First create the wrapper using SWIG:

$ swig -javascript -node -c++ example.i

Then run node-gyp build to actually create the module:

$ node-gyp build

This will create a build folder containing the native module. To use the extension you need to 'require' it in your Javascript source file:


A more detailed explanation is given in the Examples section. Troubleshooting

This error happens when gyp is installed as a distribution package. It seems to be outdated. Removing it resolves the problem.

$ sudo apt-get remove gyp

26.3.2 Embedded Webkit

Webkit is pre-installed on Mac OS X and available as a library for GTK. Mac OS X

There is general information about programming with WebKit on Apple Developer Documentation. Details about Cocoa programming are not covered here.

An integration of a native extension 'example' would look like this:

#import "appDelegate.h"

extern bool example_initialize(JSGlobalContextRef context, JSObjectRef* exports);

@implementation ExampleAppDelegate

@synthesize webView;

- (void)addGlobalObject:(JSContextRef) context:(NSString *)objectName:(JSObjectRef) theObject {
  JSObjectRef global = JSContextGetGlobalObject(context);
  JSStringRef objectJSName = JSStringCreateWithCFString( (CFStringRef) objectName )
  if ( objectJSName != NULL ) {
    JSObjectSetProperty(context, global, objectJSName, theObject, kJSPropertyAttributeReadOnly, NULL);
    JSStringRelease( objectJSName );

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

  // Start a webview with the bundled index.html file
  NSString *path = [[NSBundle mainBundle] bundlePath];
  NSString *url =  [NSString stringWithFormat: @"file://%@/Contents/Assets/index.html", path];

  WebFrame *webframe = [webView mainFrame];
  JSGlobalContextRef context = [webframe globalContext];

  JSObjectRef example;
  example_initialize(context, &example);
  [self addGlobalObject:context:@"example":example]

  JSObjectSetProperty(context, global, JSStringRef propertyName, example, JSPropertyAttributes attributes, NULL);

  [ [webView mainFrame] loadRequest:
    [NSURLRequest requestWithURL: [NSURL URLWithString:url] ]

@end GTK

There is general information about programming GTK at GTK documentation and in the GTK tutorial, and for Webkit there is a Webkit GTK+ API Reference.

An integration of a native extension 'example' would look like this:

#include <gtk/gtk.h>
#include <webkit/webkit.h>

extern bool example_initialize(JSGlobalContextRef context);

int main(int argc, char* argv[])
  // Initialize GTK+
  gtk_init(&argc, &argv);


  // Create a browser instance
  WebKitWebView *webView = WEBKIT_WEB_VIEW(webkit_web_view_new());
  WebFrame *webframe = webkit_web_view_get_main_frame(webView);
  JSGlobalContextRef context = webkit_web_frame_get_global_context(webFrame);
  JSObjectRef global = JSContextGetGlobalObject(context);

  JSObjectRef exampleModule;
  example_initialize(context, &exampleModule);
  JSStringRef jsName = JSStringCreateWithUTF8CString("example");
  JSObjectSetProperty(context, global, jsName, exampleModule, kJSPropertyAttributeReadOnly, NULL);


  // Load a web page into the browser instance
  webkit_web_view_load_uri(webView, "http://www.webkitgtk.org/");


  // Run the main GTK+ event loop

  return 0;

26.3.3 Creating Applications with node-webkit

To get started with node-webkit there is a very informative set of wiki pages.

Similar to node.js, node-webkit is started from command line within a node.js project directory. Native extensions are created in the very same way as for node.js, except that a customized gyp derivate has to be used: nw-gyp.

A simple example would have the following structure:

- package.json
- app.html
- app.js
- node_modules
  / example
  ... (as known from node.js)

The configuration file essentially conforms to node.js syntax. It has some extras to configure node-webkit. See the Manifest specification for more details.


  "name": "example",
  "main": "app.html",
  "window": {
    "show": true,
    "width": 800,
    "height": 600

The 'main' property of package.json specifies a web-page to be rendered in the main window.


    <script src="app.js"></script>
      The greatest common divisor of
      <span id="x"></span> and
      <span id="y"></span> is
      <span id="z"></span>.

As known from node.js one can use require to load javascript modules. Additionally, node-webkit provides an API that allows to manipulate the window's menu, open new windows, and many more things.


window.onload = function() {
  var example = require("example");
  var x = 18;
  var y = 24;
  var z = example.gcd(x, y);
  document.querySelector('#x').innerHTML = x;
  document.querySelector('#y').innerHTML = y;
  document.querySelector('#z').innerHTML = z;

26.4 Examples

Some basic examples are shown here in more detail.

26.4.1 Simple

The common example simple looks like this:

/* File : example.i */
%module example

%inline %{
extern int    gcd(int x, int y);
extern double Foo;

To make this available as a node extension a binding.gyp has to be created:

  "targets": [
      "target_name": "example",
      "sources": [ "example.cxx", "example_wrap.cxx" ]

Then node-gyp is used to build the extension:

$ node-gyp configure build

From a 'nodejs` application the extension would be used like this:

// import the extension via require
var example = require("./build/Release/example");

// calling the global method
var x = 42;
var y = 105;
var g = example.gcd(x, y);

// Accessing the global variable
var f = example.Foo;
example.Foo = 3.1415926;

First the module example is loaded from the previously built extension. Global methods and variables are available in the scope of the module.

Note: ECMAScript 5, the currently implemented Javascript standard, does not have modules. node.js and other implementations provide this mechanism defined by the CommonJS group. For browsers this is provided by Browserify, for instance.

26.4.2 Class

The common example class defines three classes, Shape, Circle, and Square:

class Shape {
  Shape() {
  virtual ~Shape() {
  double  x, y;
  void    move(double dx, double dy);
  virtual double area(void) = 0;
  virtual double perimeter(void) = 0;
  static  int nshapes;

class Circle : public Shape {
  double radius;
  Circle(double r) : radius(r) { }
  virtual double area(void);
  virtual double perimeter(void);

class Square : public Shape {
  double width;
  Square(double w) : width(w) { }
  virtual double area(void);
  virtual double perimeter(void);

Circle and Square inherit from Shape. Shape has a static variable nshapes, a function move that can't be overridden (non-virtual), and two abstract functions area and perimeter (pure virtual) that must be overridden by the sub-classes.

A nodejs extension is built the same way as for the simple example.

In Javascript it can be used as follows:

var example = require("./build/Release/example");

// local aliases for convenience
var Shape = example.Shape;
var Circle = example.Circle;
var Square = example.Square;

// creating new instances using the 'new' operator
var c = new Circle(10);
var s = new Square(10);

// accessing a static member

// accessing member variables
c.x = 20;
c.y = 30;
s.x = -10;
s.y = 5;

// calling some methods

// instantiation of Shape is not permitted
new Shape();

Running these commands in an interactive node shell results in the following output:

$ node -i
& var example = require("./build/Release/example");
& var Shape = example.Shape;
& var Circle = example.Circle;
& var Square = example.Square;
& var c = new Circle(10);
& var s = new Square(10);
& Shape.nshapes;
& c.x = 20;
& c.y = 30;
& s.x = -10;
& s.y = 5;
& c.area();
& c.perimeter();
& s.area();
& s.perimeter();
& c.move(40, 40)
& c.x
& c.y
& new Shape()
Error: Class Shape can not be instantiated
at repl:1:2
at REPLServer.self.eval (repl.js:110:21)
at Interface.<anonymous> (repl.js:239:12)
at Interface.EventEmitter.emit (events.js:95:17)
at Interface._onLine (readline.js:202:10)
at Interface._line (readline.js:531:8)
at Interface._ttyWrite (readline.js:760:14)
at ReadStream.onkeypress (readline.js:99:10)
at ReadStream.EventEmitter.emit (events.js:98:17)
at emitKey (readline.js:1095:12)

Note: In ECMAScript 5 there is no concept for classes. Instead each function can be used as a constructor function which is executed by the 'new' operator. Furthermore, during construction the key property prototype of the constructor function is used to attach a prototype instance to the created object. A prototype is essentially an object itself that is the first-class delegate of a class used whenever the access to a property of an object fails. The very same prototype instance is shared among all instances of one type. Prototypal inheritance is explained in more detail on in Inheritance and the prototype chain, for instance.

26.5 Implementation

The Javascript Module implementation has taken a very different approach compared to other language modules in order to support different Javascript interpreters.

26.5.1 Source Code

The Javascript module is implemented in Source/Modules/javascript.cxx. It dispatches the code generation to a JSEmitter instance, V8Emitter or JSCEmitter. Additionally there are some helpers: Template, for templated code generation, and JSEmitterState, which is used to manage state information during AST traversal. This rough map shall make it easier to find a way through this huge source file:

// module wide defines

#define NAME "name"

// ###############################
// #  Helper class declarations

class JSEmitterState { ... };

class Template { ... };

// ###############################
// # JSEmitter declaration

class JSEmitter { ... };

// Emitter factory declarations

JSEmitter *swig_javascript_create_JSCEmitter();
JSEmitter *swig_javascript_create_V8Emitter();

// ###############################
// # Javascript module

// Javascript module declaration

class JAVASCRIPT:public Language { ... };

// Javascript module implementation

int JAVASCRIPT::functionWrapper(Node *n) { ... }

// Module factory implementation

static Language *new_swig_javascript() { ... }

extern "C" Language *swig_javascript(void) { ... }

// ###############################
// # JSEmitter base implementation

JSEmitter::JSEmitter() { ... }

Template JSEmitter::getTemplate(const String *name) { ... }

// ###############################
// # JSCEmitter

// JSCEmitter declaration

class JSCEmitter: public JSEmitter { ... };

// JSCEmitter implementation

JSCEmitter::JSCEmitter() { ... }

void JSCEmitter::marshalInputArgs(Node *n, ParmList *parms, Wrapper *wrapper, MarshallingMode mode, bool is_member, bool is_static) { ... }

// JSCEmitter factory

JSEmitter *swig_javascript_create_JSCEmitter() { ... }

// ###############################
// # V8Emitter

// V8Emitter declaration

class V8Emitter: public JSEmitter { ... };

// V8Emitter implementation

V8Emitter::V8Emitter() { ... }

int V8Emitter::initialize(Node *n) { ... }

// V8Emitter factory

JSEmitter *swig_javascript_create_V8Emitter() { ... }

// ###############################
// # Helper implementation (JSEmitterState, Template)

JSEmitterState::JSEmitterState() { ... }

Template::Template(const String *code_) { ... }

26.5.2 Code Templates

All generated code is created on the basis of code templates. The templates for JavascriptCore can be found in Lib/javascript/jsc/javascriptcode.swg, for v8 in Lib/javascript/v8/javascriptcode.swg.

To track the originating code template for generated code you can run

$ swig -javascript -jsc -debug-codetemplates

which wraps generated code with a descriptive comment

/* begin fragment("template_name") */

...generated code ...

/* end fragment("template_name") */

The Template class is used like this:

Template t_register = getTemplate("jsv8_register_static_variable");
t_register.replace("$jsparent", state.clazz(NAME_MANGLED))
    .replace("$jsname", state.variable(NAME))
    .replace("$jsgetter", state.variable(GETTER))
    .replace("$jssetter", state.variable(SETTER))

A code template is registered with the JSEmitter via fragment(name, "template"), e.g.,

%fragment ("jsc_variable_declaration", "templates")
  {"$jsname", $jsgetter, $jssetter, kJSPropertyAttributeNone},

Template creates a copy of that string and Template::replace uses Swig's Replaceall to replace variables in the template. Template::trim can be used to eliminate leading and trailing whitespaces. Template::print is used to write the final template string to a Swig DOH (based on Printv). All methods allow chaining.

26.5.3 Emitter

The Javascript module delegates code generation to a JSEmitter instance. The following extract shows the essential interface:

class JSEmitter {

   * Opens output files and temporary output DOHs.
  virtual int initialize(Node *n);

   * Writes all collected code into the output file(s).
  virtual int dump(Node *n) = 0;

   * Cleans up all open output DOHs.
  virtual int close() = 0;


   * Invoked at the beginning of the classHandler.
  virtual int enterClass(Node *);

   * Invoked at the end of the classHandler.
  virtual int exitClass(Node *) {
    return SWIG_OK;

   * Invoked at the beginning of the variableHandler.
  virtual int enterVariable(Node *);

   * Invoked at the end of the variableHandler.
  virtual int exitVariable(Node *) {
    return SWIG_OK;

   * Invoked at the beginning of the functionHandler.
  virtual int enterFunction(Node *);

   * Invoked at the end of the functionHandler.
  virtual int exitFunction(Node *) {
    return SWIG_OK;

   * Invoked by functionWrapper callback after call to Language::functionWrapper.
  virtual int emitWrapperFunction(Node *n);

   * Invoked from constantWrapper after call to Language::constantWrapper.
  virtual int emitConstant(Node *n);

   * Registers a given code snippet for a given key name.
   * This method is called by the fragmentDirective handler
   * of the JAVASCRIPT language module.
  int registerTemplate(const String *name, const String *code);

   * Retrieve the code template registered for a given name.
  Template getTemplate(const String *name);

  State &getState();



The module calls initialize, dump, and close from within the top method:

int JAVASCRIPT::top(Node *n) {



  return SWIG_OK;

The methods enterClass and exitClass are called from within the classHandler method:

int JAVASCRIPT::classHandler(Node *n) {


  return SWIG_OK;

In enterClass the emitter stores state information that is necessary when processing class members. In exitClass the wrapper code for the whole class is generated.

26.5.4 Emitter states

For storing information during the AST traversal the emitter provides a JSEmitterState with different slots to store data representing the scopes global, class, function, and variable.

class JSEmitterState {




  DOH *global();

  DOH *global(const char* key, DOH *initial = 0);

  DOH *clazz(bool reset = false);

  DOH *clazz(const char* key, DOH *initial = 0);

  DOH *function(bool reset = false);

  DOH *function(const char* key, DOH *initial = 0);

  DOH *variable(bool reset = false);

  DOH *variable(const char* key, DOH *initial = 0);

  static int IsSet(DOH *val);


When entering a scope, such as in enterClass, the corresponding state is reset and new data is stored:

state.clazz(NAME, Getattr(n, "sym:name"));

State information can be retrieved using state.clazz(NAME) or with Getattr on state.clazz() which actually returns a Hash instance.

26.5.5 Handling Exceptions in JavascriptCore

Applications with an embedded JavascriptCore should be able to present detailed exception messages that occur in the Javascript engine. Below is an example derived from code provided by Brian Barnes on how these exception details can be extracted.

void script_exception_to_string(JSContextRef js_context, JSValueRef exception_value_ref, char* return_error_string, int return_error_string_max_length)
  JSObjectRef exception_object;
  JSValueRef value_ref;
  JSStringRef jsstring_property_name = NULL;
  JSValueRef temporary_exception = NULL;
  JSStringRef js_return_string = NULL;
  size_t bytes_needed;
  char* c_result_string = NULL;
  exception_object = JSValueToObject(js_context, exception_value_ref, NULL);

  /* source url */
  strcpy(return_error_string, "[");
  jsstring_property_name = JSStringCreateWithUTF8CString("sourceURL");
  value_ref = JSObjectGetProperty(js_context, exception_object, jsstring_property_name, &temporary_exception);
  js_return_string = JSValueToStringCopy(js_context, value_ref, NULL);
  bytes_needed = JSStringGetMaximumUTF8CStringSize(js_return_string);
  c_result_string = (char*)calloc(bytes_needed, sizeof(char));
  JSStringGetUTF8CString(js_return_string, c_result_string, bytes_needed);
  strncat(return_error_string, c_result_string, return_error_string_max_length-1);

  strncat(return_error_string, ":", return_error_string_max_length-1);

  /* line number */

  jsstring_property_name = JSStringCreateWithUTF8CString("line");
  value_ref = JSObjectGetProperty(js_context, exception_object, jsstring_property_name, &temporary_exception);
  js_return_string = JSValueToStringCopy(js_context, value_ref, NULL);
  bytes_needed = JSStringGetMaximumUTF8CStringSize(js_return_string);
  c_result_string = (char*)calloc(bytes_needed, sizeof(char));
  JSStringGetUTF8CString(js_return_string, c_result_string, bytes_needed);
  strncat(return_error_string, c_result_string, return_error_string_max_length-1);

  strncat(return_error_string, "]", return_error_string_max_length-1);

  /* error message */

  jsstring_property_name = JSStringCreateWithUTF8CString("message");
  value_ref = JSObjectGetProperty(js_context, exception_object, jsstring_property_name, &temporary_exception);
  if(NULL == value_ref)
    strncat(return_error_string, "Unknown Error", return_error_string_max_length-1);
    js_return_string = JSValueToStringCopy(js_context, value_ref, NULL);
    bytes_needed = JSStringGetMaximumUTF8CStringSize(js_return_string);
    c_result_string = (char*)calloc(bytes_needed, sizeof(char));
    JSStringGetUTF8CString(js_return_string, c_result_string, bytes_needed);
    strncat(return_error_string, c_result_string, return_error_string_max_length-1);

It would be used in the following way:

  char return_error_string[256];
  script_exception_to_string(js_context, js_exception, return_error_string, 256);
  printf("Compile error is %s", return_error_string);